
1

Computer Networks
CS3611

Application Layer-Part 1

Haiming Jin

The slides are adapted from those provided by Prof. Romit Roy Choudhury.

2: Application Layer 2

Chapter 2: Application layer

r 2.1 Principles of network
applications

r 2.2 Web and HTTP
r 2.3 FTP
r 2.4 Electronic Mail

v SMTP, POP3, IMAP

2: Application Layer 4

Chapter 2: Application Layer
Our goals:
r Principles of network

application design

v transport-layer service
models

v client-server paradigm
v peer-to-peer paradigm

r Popular protocols
through case studies
v HTTP
v FTP
v SMTP / POP3 / IMAP
v DNS

2: Application Layer 5

Some network apps

r E-mail
r Web
r Instant messaging
r Remote login
r P2P file sharing
r Multi-user network games
r Streaming stored video

clips

r Internet telephone
r Real-time video

conference
r Massive parallel

computing
r
r
r

Next generation: The network will be the computer. Most
Applications will run over the network. Local PC minimaly required
Example: Shimo, Overleaf, Google spread sheet

2: Application Layer 6

Creating a network app
Write programs that

v run on different end systems
and

v communicate over a network.
v e.g., Web: Web server software

communicates with browser
software

little software written for
devices in network core
v network core devices do not run

user application code
v application on end systems

allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 7

Chapter 2: Application layer

r 2.1 Principles of network
applications

r 2.2 Web and HTTP
r 2.3 FTP
r 2.4 Electronic Mail

v SMTP, POP3, IMAP

r 2.5 DNS

2: Application Layer 8

Application architectures

r Client-server
r Peer-to-peer (P2P)
r Hybrid of client-server and P2P

2: Application Layer 9

Client-server architecture
server:

v always-on host
v permanent IP address
v server farms for scaling

clients:
v communicate with server
v may be intermittently

connected
v may have dynamic IP

addresses
v do not communicate

directly with each other

2: Application Layer 10

Pure P2P architecture

r no always-on server
r arbitrary end systems

directly communicate
r peers are intermittently

connected and change IP
addresses

r example: BitTorrent, 百度
网盘（peer-assisted
download acceleration)

Highly scalable but difficult to
manage

2: Application Layer 11

Hybrid of client-server and P2P

Skype
v Internet telephony app
v Finding address of remote party: centralized server(s)
v Client-client connection is direct (not through server)

Instant messaging
v Chatting between two users is P2P
v Presence detection/location centralized:

• User registers its IP address with central server when it comes online
• User contacts central server to find IP addresses of buddies

2: Application Layer 13

Processes communicating
Process: program running

within a host.
r within same host, two

processes communicate
using inter-process
communication (defined by
OS).

r processes in different hosts
communicate by
exchanging messages

Client process: process that
initiates communication

Server process: process that
waits to be contacted

r Note: applications with P2P
architectures have client
processes & server
processes

2: Application Layer 14

Sockets

r process sends/receives
messages to/from its socket

r socket analogous to door
v sending process shoves

message out door
v sending process relies on

transport infrastructure on other
side of door which brings
message to socket at receiving
process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

r API: (1) choice of transport protocol; (2) ability to fix a few
parameters (lots more on this later)

2: Application Layer 15

Addressing processes
r to receive messages,

process must have
identifier

r host device has unique 32-
bit IP address

r Q: does IP address of host
on which process runs
suffice for identifying the
process?

2: Application Layer 16

Addressing processes
r to receive messages,

process must have
identifier

r host device has unique 32-
bit IP address

r Q: does IP address of host
on which process runs
suffice for identifying the
process?
v Answer: NO, many

processes can be running on
same host

r identifier includes both IP
address and port numbers
associated with process on
host.

r Example port numbers:
v HTTP server: 80
v Mail server: 25

r to send HTTP message to
gaia.cs.umass.edu web
server:
v IP address: 128.119.245.12
v Port number: 80

r more shortly…

2: Application Layer 17

Message Format:
App-layer protocol defines

r Types of messages
exchanged,
v e.g., request, response

r Message syntax:
v what fields in messages &

how fields are delineated

r Message semantics
v meaning of information in

fields

r Rules for when and how
processes send & respond
to messages

Public-domain protocols:
r defined in RFCs
r e.g., HTTP, SMTP
Proprietary protocols:
r e.g., Skype

2: Application Layer 19

Requirements for Message Transport:

Data loss
r some apps (e.g., audio) can

tolerate some loss
r other apps (e.g., file transfer,

telnet) require 100% reliable
data transfer

Timing
r some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

Bandwidth
r some apps (e.g.,

multimedia) require
minimum amount of
bandwidth to be
“effective”

r other apps (“elastic apps”)
make use of whatever
bandwidth they get

Why is bandwidth different from
timing constraints?

2: Application Layer 21

Internet transport protocols services

TCP service:
r connection-oriented: setup

required between client and server
processes

r reliable transport between sending
and receiving process

r flow control: sender won’t
overwhelm receiver

r congestion control: throttle sender
when network overloaded

r does not provide: timing,
minimum bandwidth guarantees

UDP service:
r unreliable data transfer

between sending and receiving
process

r does not provide: connection
setup, reliability, flow control,
congestion control, timing, or
bandwidth guarantee

Q: why bother? Why is there a
UDP?

2: Application Layer 23

Chapter 2: Application layer

r 2.1 Principles of network
applications
v app architectures
v app requirements

r 2.2 Web and HTTP
r 2.4 Electronic Mail

v SMTP, POP3, IMAP

r 2.5 DNS

r 2.6 P2P file sharing
r 2.7 Socket programming

with TCP
r 2.8 Socket programming

with UDP
r 2.9 Building a Web server

2: Application Layer 25

Web and HTTP

First some jargon
r Web page consists of objects
r Object can be HTML file, JPEG image, audio file,…
r Web page consists of base HTML-file which includes

several referenced objects
r Each object is addressable by a URL
r Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

2: Application Layer 26

HTTP overview

HTTP: hypertext transfer
protocol

r Web’s application layer
protocol

r client/server model
v client: browser that

requests, receives,
“displays” Web objects

v server: Web server sends
objects in response to
requests

r HTTP 1.0: RFC 1945
r HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

2: Application Layer 27

HTTP overview (continued)

Uses TCP:
r client initiates TCP connection

(creates socket) to server, port 80
r server accepts TCP connection

from client
r HTTP messages (application-

layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

r TCP connection closed

HTTP is “stateless”
r server maintains no

information about past
client requests

Protocols that maintain “state” are
complex!

r past history (state) must be
maintained

r if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

2: Application Layer 28

HTTP connections

Nonpersistent HTTP
r At most one object is sent

over a TCP connection.
r HTTP/1.0 uses

nonpersistent HTTP

Persistent HTTP
r Multiple objects can be

sent over single TCP
connection between client
and server.

r HTTP/1.1 uses persistent
connections in default
mode

2: Application Layer 29

Nonpersistent HTTP
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server (process)
at www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its socket

time

(contains text,
references to 10

jpeg images)

2: Application Layer 30

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10
jpeg objects

4. HTTP server closes TCP
connection.

time

2: Application Layer 31

Non-Persistent HTTP: Response
time
Round Trip Time (RTT) = time
to send a small packet to travel
from client to server and back.

Response time:
r one RTT to initiate TCP

connection
r one RTT for HTTP request
 and first few bytes of HTTP

response to return
r file transmission time
total = 2RTT+ <file transmit time>

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

2: Application Layer 32

Persistent HTTP

Nonpersistent HTTP issues:
r requires 2 RTTs per object
r OS overhead for each TCP

connection
r browsers often open parallel

TCP connections to fetch
referenced objects

Persistent HTTP
r server leaves connection open

after sending response
r subsequent HTTP messages

between same client/server sent
over open connection

Persistent without pipelining:
r client issues new request only

when previous response has
been received

r one RTT for each referenced
object

Persistent with pipelining:
r default in HTTP/1.1
r client sends requests as soon as

it encounters a referenced
object

r as little as one RTT for all the
referenced objects

2: Application Layer 33

HTTP request message

r two types of HTTP messages: request, response
r HTTP request message:

v ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

2: Application Layer 36

Method types

HTTP/1.0
r GET
r POST
r HEAD

v asks server to leave
requested object out of
response

HTTP/1.1
r GET, POST, HEAD
r PUT

v uploads file in entity body
to path specified in URL
field

r DELETE
v deletes file specified in the

URL field

2: Application Layer 37

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

2: Application Layer 38

HTTP response status codes

200 OK
v request succeeded, requested object later in this message

301 Moved Permanently
v requested object moved, new location specified later in this message

(Location:)
400 Bad Request

v request message not understood by server
404 Not Found

v requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2: Application Layer 40

Chapter 2: Application layer

r 2.1 Principles of network
applications
v app architectures
v app requirements

r 2.2 Web and HTTP
r 2.4 Electronic Mail

v SMTP, POP3, IMAP

r 2.5 DNS

2: Application Layer 41

User-server state: cookies

Many major Web sites use
cookies

Four components:
1) cookie header line of HTTP

response message
2) cookie header line in HTTP

request message
3) cookie file kept on user’s

host, managed by user’s
browser

4) back-end database at Web
site

Example:
v Susan access Internet

always from same PC
v She visits a specific e-

commerce site for first time
v When initial HTTP requests

arrives at site, site creates a
unique ID and creates an
entry in backend database
for ID

2: Application Layer 42

Cookies: keeping “state” (cont.)

client server
usual http request msg
usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

entry in backend

database

access

acc
ess

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

2: Application Layer 43

Cookies (continued)
What cookies can bring:
r authorization
r shopping carts
r recommendations
r user session state (Web e-

mail)

Cookies and privacy:
r cookies permit sites to

learn a lot about you
r you may supply name and

e-mail to sites
r search engines use

redirection & cookies to
learn yet more

r advertising companies
obtain info across sites

aside

2: Application Layer 44

Web caches (proxy server)

r user sets browser: Web
accesses via cache

r browser sends all HTTP
requests to cache
v object in cache: cache

returns object
v else cache requests object

from origin server, then
returns object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

2: Application Layer 46

More about Web caching
r Cache acts as both client and

server
r Typically cache is installed by

ISP (university, company,
residential ISP)

Why Web caching?
r Reduce response time for client

request.
r Reduce traffic on an

institution’s access link.
r Internet dense with caches

enables “poor” content
providers to effectively deliver
content

2: Application Layer 47

Caching example
Assumptions
r average object size = 100,000 bits
r avg. request rate from institution’s

browsers to origin servers = 15/sec
r delay from institutional router to

any origin server and back to router
= 2 sec

Consequences
r utilization on LAN = 15%
r utilization on access link = 100%
r total delay = Internet delay + access

delay + LAN delay
 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

2: Application Layer 48

Caching example (cont)
Possible solution
r increase bandwidth of access link

to, say, 10 Mbps
Consequences
r utilization on LAN = 15%
r utilization on access link = 15%
r Total delay = Internet delay + access

delay + LAN delay
 = 2 sec + msecs + msecs
r often a costly upgrade

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

2: Application Layer 49

Caching example (cont)

Install cache
r suppose hit rate is .4
Consequence
r 40% requests will be satisfied

almost immediately
r 60% requests satisfied by origin

server
r utilization of access link reduced

to 60%, resulting in negligible
delays (say 10 msec)

r total avg delay = Internet delay
+ access delay + LAN delay =
.6*(2.01) secs + .4*milliseconds
< 1.4 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 51

Questions?

2: Application Layer 52

Chapter 2: Application layer

r 2.1 Principles of network
applications

r 2.2 Web and HTTP
r 2.3 FTP
r 2.4 Electronic Mail

v SMTP, POP3, IMAP

r 2.5 DNS

r 2.6 P2P file sharing
r 2.7 Socket programming

with TCP
r 2.8 Socket programming

with UDP
r 2.9 Building a Web server

2: Application Layer 53

FTP: the file transfer protocol

r transfer file to/from remote host
r client/server model

v client: side that initiates transfer (either to/from remote)
v server: remote host

r ftp: RFC 959
r ftp server: port 21

��������

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

2: Application Layer 54

FTP: separate control, data
connections
r FTP client contacts FTP server at

port 21, specifying TCP as transport
protocol
v Client obtains authorization

r Client browses remote directory by
sending control commands

r When server receives a command,
opens TCP data connection to client

r After transferring one file, server
closes connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

r Server opens a second TCP data
connection to transfer another file.

r Control connection: “out of band”
r FTP server maintains “state”:

current directory, earlier
authentication

2: Application Layer 56

FTP commands, responses

Sample commands:
r sent as ASCII text over control

channel
r USER username
r PASS password

r LIST return list of file in
current directory

r RETR filename retrieves
(gets) file

r STOR filename stores
(puts) file onto remote host

Sample return codes
r status code and phrase (as in

HTTP)
r 331 Username OK,

password required
r 125 data connection

already open;
transfer starting

r 425 Can’t open data
connection

r 452 Error writing
file

2: Application Layer 57

Chapter 2: Application layer

r 2.1 Principles of network
applications

r 2.2 Web and HTTP
r 2.3 FTP
r 2.4 Electronic Mail

v SMTP, POP3, IMAP

r 2.5 DNS

2: Application Layer 58

Electronic Mail

Three major components:
r user agents
r mail servers
r simple mail transfer protocol:

SMTP

User Agent
r a.k.a. “mail reader”
r composing, editing, reading mail

messages
r e.g., Eudora, Outlook, elm,

Netscape Messenger
r outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 59

Electronic Mail: mail servers

Mail Servers
r mailbox contains incoming

messages for user
r message queue of outgoing (to

be sent) mail messages
r SMTP protocol between mail

servers to send email messages
v client: sending mail server
v “server”: receiving mail

server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 60

Electronic Mail: SMTP [RFC 2821]

r uses TCP on port 25 to reliably transfer email

r direct transfer: sending server to receiving server

r three phases of transfer
v handshaking (greeting)
v transfer of messages
v Closure

r command/response interaction
v commands: ASCII text
v response: status code and phrase

2: Application Layer 61

Scenario: Alice Emails Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message to
her mail server; message placed
in message queue

3) Client side of SMTP opens TCP
connection with Bob’s mail
server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent to
read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

2: Application Layer 64

SMTP: final words
r SMTP uses persistent

connections
r SMTP requires message

(header & body) to be in 7-bit
ASCII

r SMTP server uses CRLF.CRLF
to determine end of message

Comparison with HTTP:
r HTTP: pull
r SMTP: push

r both have ASCII
command/response interaction,
status codes

r HTTP: each object
encapsulated in its own
response msg

r SMTP: multiple objects sent in
multipart msg

2: Application Layer 66

Message format: multimedia extensions
r MIME: multimedia mail extension, RFC 2045, 2056
r additional lines in msg header declare MIME content type

v Think of image attachments with your email

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

2: Application Layer 67

Mail access protocols

r SMTP: delivery/storage to receiver’s server
r Mail access protocol: retrieval from server

v POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

v IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

v HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

What’s the
Difference?

2: Application Layer 69

POP3 (more) and IMAP
More about POP3
r Previous example uses

“download and delete”
mode.

r Bob cannot re-read e-mail
if he changes client

r “Download-and-keep”:
copies of messages on
different clients

r POP3 is stateless across
sessions

IMAP
r Keep all messages in one

place: the server
r Allows user to organize

messages in folders
r IMAP keeps user state

across sessions:
v names of folders and

mappings between message
IDs and folder name

